分数除以整数教案1 方法一 师:先填空,再说出自己的想法。 生1:分数除以整数,等于分数乘整数的倒数。 生2:可以依据商不变的性质把除数变成“1”,就是被除数和除数都乘上除数的倒数。 生3下面是小编为大家整理的分数除以整数教案五篇(2023年),供大家参考。
分数除以整数教案1
方法一
师:先填空,再说出自己的想法。
生1:分数除以整数,等于分数乘整数的倒数。
生2:可以依据商不变的性质把除数变成“1”,就是被除数和除数都乘上除数的倒数。
生3:我也可以把除数是分数的除法也转化为除数为“1”。
师:谁能把这个除法算式计算出来?
师:同学们找到了最简便的计算方法,谁能用一句话来概括呢?
生:整数除以分数(0除外),等于整数乘这个分数的倒数。
方法二
在简单复习“分数除以整数”计算的基础上,回忆“分数除以整数(0除外),等于分数乘这个整数的倒数”。
生2:我觉得这种方法有局限性,当除数不能化成有限小数时,用这种方法就不能计算出正确的结果。
生3:因为分数除以整数(0除外),等于分数乘这个整数的倒数。我想整数除以分数也可以用整数乘分数的倒师:这种计算方法究竟如何呢?下面大家一起来探究“整数除以分数”的计算法则。
(教师引导学生根据题意画出下面的线段图)
师:根据上面的线段图,你能推算出1小时能行多少千米吗?
师:从上面可以看出,整数除以分数只要怎样计算就可以了?
生:(异口同声)整数除以分数,等于整数乘这个分数的倒数。
……
【反思】
方法一突破了书本的束缚,以“商不变性质”为基础推导法则,为学生学习作了必要的知识铺垫,推导出计算法则“耗时短,见效快”。但学生是在教师事先设计好的轨迹中学习数学,失去了自身学习的能动性和创造性,同时这种教法除了关注计算的技巧之外,明显地缺少了对学生后续学习发展的数学思考。
方法二鼓励学生合理运用多种思维方式去思考解决问题的方法,重视学生的个性化建构过程。表现为三个层次的思维训练。第一层次是直觉思维形式。即由“因为分数除以整数(0除外),等于分数乘这个整数的倒数”。我猜想整数除以分数也只要用整数乘分数的倒数。第二层次是形象思维形式。由教师引导学生根据题意画出线段图,从而使学生借助直观图形展开思维,培养了学生的形象思维能力。第三层次是逻辑思维形式。最后由一名学生联想已学过的`“商不变的性质”推导出法则。这是一种逻辑思维形式,是学生利用旧知探索并“创造”新知的表现,这种解释深刻而富有创造性。一方面,很简捷地验证了猜想是正确的;另一方面,学生新旧知识的沟通、应用能力也是一次很好的展现。整个教学过程的三个阶段,体现了三种思维形式在知识建构过程中的灵活运用,有利于因材施教、发展个性,培养学生的思维能力。
比较两种教法,有以下启示:要“探究法则”,而不要单纯“传授法则”,突出数学学习的过程性;要加强数学思维能力的培养,而不要单纯进行法则技能训练,以突出数学学习过程中的发展性;要引导学生欣赏自己,而不要单纯羡慕老师,以突出数学学习过程中的价值观。
分数除以整数教案2
教学目标
1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。
2.能运用法则正确地进行计算。
3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。
教学重点
整数除以分数计算法则的推导过程。
教学难点
如何区别、统一分数除以整数、整数除以分数两个计算法则。
教学过程设计
(一)复习旧知
1.说出下面各题的倒数。(投影出示)
2.把算式补充完整。(投影出示)
问:分数除以整数的法则是什么?谁不变?谁变?
生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)
问:分数除以整数是把谁变成它的倒数了?为什么?
生:把整数变成它的倒数了,因为整数处在除数的位置。
师:我们上节课学习了分数除以整数的"计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)
(二)新授教学
1.一辆汽车2小时行驶90千米。1小时行驶多少千米?
问:①谁会列式计算?
板书: 02=45(千米)
②根据什么这样列式?
生:根据路程时间=速度。
问:要求1小时行驶多少千米就是求什么?
生:求汽车的速度。
问:怎样列式?为什么这样列式?
怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。
师:根据你们说的老师画图。用一条线段的长表示1小时,把它*
问:怎么求?为什么这样求?
(2)要求1小时行多少千米,怎么求?
算式变化形式:
根据上面的推导过程可得出:
这两个算式相等吗?
我们把这道题完成。
答:汽车1小时行驶45千米。
(3)观察算式:谁没变?谁变了?怎么变的?
讨论:整数除以分数的计算法则是什么?
谁能说一说?
板书:整数除以分数等于整数乘以这个分数的倒数。
同桌互相说一说。
谁愿意给大家说一说?
(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。
订正,错的说错在哪里,并改正过程。
(三)巩固练习
1.投影出示。
(1)分数除以整数(0除外)等于分数乘以整数的倒数。
(2)整数除以分数,等于整数乘以分数的倒数。
问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?
生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。
问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。
问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?
生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。
2.把下面各题补充完整。
3.计算。在本上写过程,得数填在书上。
订正,指名把过程写在投影片上。
错的同学说明错因。
4.判断。对的举,错的举,并说明理由。
师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。
(四)课堂总结
这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?
(五)作业
课本第36页第1,3,4题。
课堂教学设计说明
本节课的内容是整数除以分数的计算法则。这节课有两个难点:
第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。
第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。
分数除以整数教案3
教学目标:
1、在解决具体问题的过程中,借助直观图示,理解分数除法的意义,探索分数除以整数除法的计算方法,并能正确进行计算。
2、经历探索分数除以整数计算方法的过程,初步形成独立思考和探索的意识。
3、让学生感受成功的体验。
教学重点、难点:
分数除以整数的计算方法
教具、学具准备:
多媒体、课件
教学过程:
一、教学意义
师:今天来了几位听课的老师,你想怎样在这节课上表现自己?
学生交流。
师:嗯,老师期待你们精彩的表现,不过,不要太紧张,这节课我们只是来帮小猴子解决一些问题,不是很难,不信,你瞧!
出示问题:
(1)每只猴子吃半个桃子,四只猴子一共吃几个桃子?
(2)两个桃子,*均分给四只猴子,每只猴子分多少个?
(3)两个桃子,分给每只猴子半个,可以分给多少只猴子?
学生解决
师:观察这三个算式,想一想,分数除法的意义是怎样的呢?
总结出示:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
同位互说。
二、探究方法 ,解决问题
1、提出问题,板书课题
师:通过解决小猴子吃桃子的问题,同学们掌握了分数除法的意义,接下来我们看看小猴子又要干什么。
出示课件:
师:根据这条信息,你能帮助小猴子解决怎样的数学问题?
出示问题:1)做一件背心需要花布多少米?
2)做一件裤子需要花布多少米?
师:对于问题1),该怎样列式呢?
学生列式(为什么这样列式?)
师:观察算式,它有什么特点?
师板书课题。
2、探究方法,汇报交流
师:这个算式该如何算呢?
学生以小组为单位讨论交流。
师巡视指导。
小组汇报
① 折纸或画图的方式(学生说一说)
② 9/10÷3=(9÷3)/10=3/10
师(板书):你是怎么想的?
③ 9/10÷3=0.9÷3=0.3
④ 9/10÷3=9/10×1/3
师(板书):你是怎么想的?
学生说自己的想法(引导学生说:把9/10米*均分成3份,是求9/10的三分之一是多少,所以可以把9/10÷3转化为9/10×1/3。)
师:同学们真棒,探究出这么多方法,你认为哪种方法好呢?
初步优化。
3、师:对于问题2),你能自己解决吗?
学生独立解决。全班交流,订正。
进一步优化方法。
师:看来你们已经初步掌握了计算的方法,那我们试一试计算这两个题?
出示试一试:6/7÷5
5/11÷4
师:现在你认为哪种方法好呢?
4、观察对比,总结方法
师:观察刚才我们的计算过程,谁愿意来总结一下计算方法呢?
学生交流,总结方法,并明白各种方法的局限性及普遍性。
师(出师课件)小结:同位之间互相说一说。
师:还有什么特别注意的吗?强调0除外以及红颜色字眼。
(为了检验你是否真正掌握了方法,老师要考考你)
出示考考你:
4/5÷4=4/5×() 2/3÷6=2/3○() 2/5÷2=()×()
三、反馈练习,巩固提高
师:同学们已经学习了分数除以整数的计算方法,那下面就到了考验大家的时刻了,有信心接受挑战吗?
课件出示:
1、争先恐后 连一连
5/9÷5 7/8÷6 1/10÷9
7/8 ×1/6 1/10×1/9 5/9×1/5
2、大显身手 算一算
10/11÷2 8/9÷8 28/19÷7 15/22÷5
3/2÷2 7/17÷4 2/9÷4 21/25÷14
3、火眼金睛 判一判
(1)2/5÷7=2/5×1/7=2/35 ()
(2)1/2÷3=1/2÷1/3=1/6 ()
(3)3/8÷3=3/8×3=8 ()
(4)3/9÷3=(3÷3)/(9÷3)=1/3 ()
4、解决问题
四、总结交流
师:今天跟大家共同学习,老师非常高兴!你的心情如何呢?你有什么收获呢?
学生交流。
分数除以整数教案4
分数除以整数
设计教师:大桥中心小学 王丽霞
指导教师:内乡教研室教研员许守敬
教学内容:义务教育十一册课本29页内容
教材简析:分数除以整数,以分数加法、减法、乘法和求一个数的倒数为基础,推导其计算法则。为以后学习分数除以分数,及分数四则混合运算做铺垫。
教学目标:
1、知识目标:引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,感知法则的形成过程。
2、能力目标:让学生在动手做、动脑想的过程中,培养学生自主探究、归纳整理的能力,同时培养合作交流的能力。
3、情感目标:培养学生热爱数学、运用数学的情感。
教学重点:分数除以整数的计算法则的推导过程。
教学过程:
一、复习旧知,导入新课
1、 出示口算卡片,学生口答。
+ - 3 6
修改:(挑其中的二个或三个算式,让学生说出算理。)
【评:口算练习不仅具有密度大、效率高的优势,而且也是计算能力的重要组成部分。适当加强口算练习,不失为一种减负增效的教学措施。口算时要求说算理,目的是培养学生用数学语言表达的习惯。】
2、把 米的绳子*均分成2段,每段占绳长的,每份长米。
二、合作探究,解决问题
(师出示一段绳子)
上一题把这段绳子*均分成2段,每段长米。有很多同学不能回答,这一节就来研究它,好吗?
(师提示)大家可以利用身边的实物、可以画图、可以转化成以前学过的知识等等。下面分组讨论,讨论好后每组派代表展示。
(生小组活动,师巡视辅导)
【评:教师强调学生的实践操作,引导学生通过量一量、画一画、折一折、涂一涂、分一分等形式,让学生在大量的实践活动中去感受、去体验、去探究,让学生充分感受数形结合的优势。】
三、展示交流,内化提升
A组:我们用实物:(拿出一段绳子)我们量得绳子长0.8米,即 米。把绳子对折就是把它*均分成2份,其中一份量得结果是0.4米,即 米。
B组:我们用画图的方法,如图: 米是4个 米,*均分成2份,每份就是2个 米,即 米。
C组:我们小组用一张圆饼来表示 米,把一张圆饼看做单位1,*均分成5份,4份代表 米,其中2份是 米。
米 米
D组:我们小组也是用折纸的办法,用一张长方形纸表示 米,把 米对折就是 米。
米
米
E组:我们小组用转化法,把 米转化成求 米的0.5倍是多少,列式是 2= 0.5= 米。
【评:引导学生把分数与倍数结合起来。使学生的知识融会贯通。】
F组:我们小组用转化法,把 2转化成求 米的一半是多少,也就是求 的 是多少,列式是 2== 。
师:大家用不同的方法,得到了相同的结果。你们很棒!
如果把 米*均分成3份或7份或其他的份数,每份长度是多少呢?你们能不能,总结一种简单、易记的方法用于以后的计算中呢?
【评:在知识的获取过程中,学生不论用什么方法,最终教师要引导学生把一个新问题转化为已经解决的问题,用已有的知识、方法生成新的知识方法。让学生充分感受转化的美妙与魅力。】
下面大家自由讨论。
生:我发现: 2== 把除法转化成乘法,计算起来简便。
生:我发现: 2= 0.5= ,也是把除法转化成乘法。
生:一个数如果除以2,可以转化成乘0.5;它除以3,可以转化成乘0.333;除以4,可以转化成乘0.25.
生:你这样计算的结果不精确,步骤太多!
生:把除法转化成乘法的第一种简便、实用。
师:你们发现除法转化成乘法时,被除数、除数发生变化了吗?怎样变的?
生:我发现除以2变成乘 ,2和 互为倒数。
生:我发现计算中,除法变乘法,除数变倒数。
(修改前:大家发现了这种除法运算中的规律,你能计算下面各题吗?)
5 10 7 14
(修改后)
师:大家发现了这种除法运算中的规律,来做个游戏好吗?
课中练习:
对口令
(1) 师说除法算式,生对相应的乘法算式。
5 10 7 14
(2) 男生说除法算式,女生对相应的乘法算式。
3 5 11 30
【评:课中练习应结合这节课的重点(计算法则的推导过程)来设计,而不是如何计算。并且用对口令的游戏方式,能增加练习的趣味性。】
师:你能用一句话完整的说出,这种除法怎样计算的吗?
生:一个分数除以整数,等于乘这个整数的倒数。
(修改前:师说:这里的除数包括0吗?)
【教师的引导太过直白;教师好的引导应给学生思维形成矛盾的撞击,让学生自己在矛盾中得到启发,自我发现,自行解决。】
(修改后:)
师:谁能计算下面的算式? 0=?
(学生窃窃私语)
生:除数不能为0。
生:除数为0没有意义。
(生恍然大悟)生:一个分数除以整数(0除外),等于乘这个整数的倒数。
师:为什么要加上0除外?
(生略)
(修改后的内容)
师:你能结合五年级《字母与数》的知识,用字母来表示吗?
n=(n为非0自然数)
【评:教师引导学生用字母来表示,把知识上升到一定的高度上,变直观思维为抽象思维。诱导学生经历由特殊到一般的探索过程。】
师:大家观察一下,这节课所学的算式用什么共同点?
生:都是除法。
生:都是分数除以整数。
师导出课题
这就是我们这节课共同探究的《分数除以整数》(板书课题)
四、回顾整理,拓展应用。
师小结:学习了这节课,你有什么收获?
生:我学会了怎样计算分数除以整数。
生:我学会了用转化的方法来计算分数除以整数,就是把除法转化成乘法,用被除数来乘这个整数的倒数。
生:我学会用多种方法表示同一个内容。
拓展应用:
一、 下面的计算对吗?把不对的改正过来。
3==
2= 2=
3==
二、在括号内填上合适的内容。
(1) 5= =
(2) 2= =
(3) 把 吨化肥,*均分给5户人家,每户分这堆化肥的, 每户分化肥的吨。
思考题:(修改后的内容)
如果a是一个不等于0的自然数
(1) a=
(2)a =
【评:增加思考题的难度,目的是照顾到各个层次的学生,使每个层次的学生都能吃饱、吃好。】
分数除以整数教案5
一、教学目标
1.经历总结规律和探索分数除以整数的计算方法的过程。
2.掌握分数除以整数的计算方法,会计算分数除以整数。
3.积极参与数学活动,感受数学与生活的密切联系,激发数学学习的兴趣。
二、学情分析
学生们在前面的学习已经知道了整数除法的意义及其计算方法,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。,学生运用折纸的方法探索分数除以整数的计算方法。学生在“玩”的过程中能够感知分数除以整数的基本算理,进而归纳出分数除以整数的计算方法。
三、重点难点
教学重点:分数除法的计算方法,会计算分数除以整数的除法。
教学难点:探索分数除以整数的计算方法。
四、教学过程
活动一(复习探索)
1复习切入:有一只小青蛙想要找到自己的妈妈,必须要通过这难题一道道的难题闯关,你愿意帮它找到妈妈吗?
通过上面的练习老师知道同学们的本事真不小,接下来老师要考考你,看看你有没有和孙悟空火眼金睛的本事。
2观察规律:观察每一组的两个算式,你发现了什么?(给学生观察的时间)
学生小组内谈谈你的发现。(教师倾听巡视)
学生谈发现,试着用一句话概括一下发现。
3教师小结:一个数除以另一个数(师板书)0除外,就等于数这个乘另一个数的倒数。
你们果真有火眼金睛的本事,发现了数学中的一个规律。
我们刚才发现整数除以整数,就等于整数乘这个数的倒数.那这个规律适用于分数除法吗?
活动二(发现规律)
探索新知
1、学生猜一猜。到底是不是像同学们想得那样呢?我们以分大饼饼为例,试着想一想。(出示,指生读题)
2、二分之一张是什么意思?把它*均分成3份又是什么意思?(生:二分之一张就是半张;把它*均分成3份就是把半张披萨*均分成3份。)?教师提问:把半张披萨*均分成3份,每份是整张披萨的几分之几?你能列出算式吗?生列式。
3、请大家拿出课前准备好的圆形纸片,折一折涂,看看每份是整张的几分之几?开始。
4、生动手操作。教师巡视。集体交流(找几人说说想法。)
师:刚才,我们通过动手操作,知道了,那计算你会吗?。师生共同交流,教师板书。
做到这,咱们看看,刚才咱们发现的规律适用于分数除法吗?生说。
5、总结:分数除以一个数(0除外)等于分数乘这个数的倒数。(出示)
读一读,记一记你的发现
活动三(练习巩固)
1、初步练习(两道基本的习题巩固所学)
2、趣味练习(通过打气球的游戏进一步加深练习)
3、你是不是会利用今天学到的知识解决生活中的问题。
第1题,学生读题,师生一起借助线段图分析题意,然后学生自己列式计算,并交流计算过程。
第2题六一儿童节期间,学校用了
*方米的红布做了一块4米长的宣传标语。这块标语的宽是多少米?自己读题。这个问题你能解决吗?想一想为什么用除法列算式?
活动四(课堂小结)
通过今天的学习,你有什么收获?
分数除以整数教案5篇扩展阅读
分数除以整数教案5篇(扩展1)
——《分数除以整数》教学反思10篇
《分数除以整数》教学反思1
本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数*均分成几份,就是求这个数的几分之一是多少”。
首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;
然后,设置问题情境,让学生先猜测分数除以整数的计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数*均分成几份,就是求这个数的几分之一是多少”,的"意义。
练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。
《分数除以整数》教学反思2
我所执教的《分数除以整数》是人教版第十一册30页的内容,本课是在学生学习了分数单位,分数乘法的意义,以及分数乘法计算方法的基础上进行教学的,通过教学可为学生理解分数除法的计算法则和应用题的.数量关系,为学习分数四则混合运算打下基础。
我认为本节课的重点:使学生理解分数除法的意义和分数除以整数的计算方法。
难点:使学生学会分析分数除以整数的计算方法,并能运用法则正确计算。
关键:对除法算式意义的理解
此外,我认为分数除以整数的教学基础,还在于以下几点,分数与小数的互化,倒数的知识,商不变性质等,基于这样的认识,我认为必须找到学生思维的起点,找到知识的来源。由此我制定了适合本节课的学习目标和教学法的设计思路
知识落实点:
1、知道分数除法的意义与整数除法意义相同
2、掌握分数除以整数的计算法则
能力训练点:
1、培养学生的分析、比较和综合能力
2、引导学生根据已有的知识大胆的尝试,体验解决问题,多样性。
3、渗透转化的教学思考方法,培养学生的归纳概括能力。
情感渗透点:
苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。引导学生探索知识间的内在联系,培养学生自主学习和发展创新意识。
计算教学,把计算方法直接告诉学生,然后进行大量的训练。这样尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。只能是机械模仿练习,但当我们给以一定的情境时,使问题生活化,用生活中的经历来学习数学,来理解推导分数除法的计算方法,既可以培养学生的学习能力和探究能力,促进学生的发展,也是课程改革理念在计算教学中的具体体现,同时也可提高学生学习效率。
《分数除以整数》教学反思3
这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。
一种竖着折,即*均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。
在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。
虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。
《分数除以整数》教学反思4
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
《分数除以整数》教学反思5
本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量关系列出求吃每人吃1/2 个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数除以几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。 学生学习整数除以分数后,部分中下生出现了这样的问题:
(1)把被除数的整数写成的倒数;
(2)把被除数的整数和除数的分数都写成了倒数。严重受到负迁移影响。在教学中如何克服呢?首先要让学生明确算理:整数除以分数,等于整数乘以这个分数的倒数,实质上是被除数除以除数等于被除数乘以除数的倒数。其次,要加强比较训练:整数除以分数、分数除以整数的题目进行分组练习,以强化加深理解整数除以分数的算理。
《分数除以整数》教学反思6
在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不*处奋力向前,一波未*,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。
此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。
《分数除以整数》教学反思7
教学目标:
1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。
2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。
3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。
教学准备:
多媒体课件、小黑板。
教学过程:
从生活中引入计算也可以如此有趣!
1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?
(学生议论纷纷;师:多了,少了,差不多了)
这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)
2、 创设情境:前面提到中秋节,这可是我们*人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。
出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了
※ 在经历中体验这样的探究很有意思!
1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?
2、 引导估算:(在师生合作完成线段图后)出示完整的线段图
提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?
怎么能看出来?说出你的想法。
1小时行?千米
小时行?千米
小时行18千米
(思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)
3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)
4、 交流分析:
1、学生代表汇报结果,有以下几种算法:
a、18310 = 60(千米) 先求1份即小时行的,再求10份;
b、180.3 = 60(千米) 把小时化成小数0.3小时;
c、18(103)= 60(千米)先求总长是已经行的路程的几倍;
d、18=18=60(千米)
利用数量关系速度=路程时间,直接乘除数的倒数。
2、让学生充分阐释前几种算法的算理。
3、教师重点引导方法d的证明与理解。
指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。
而这是一道分数除法算式, 18 =18=60(千米)
你是又根据什么来列式的? (板书:速度=路程时间)
与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)
追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?
A利用线段图说明算理:
学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)
1小时行?千米
小时行?千米
18千米 18千米 18千米
B用其他方法验证算理:
谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。
师随即板书思路18310=1810=18=60(千米)
18(103) = 18=60(千米)
5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的一个重要思路。
那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)
6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?
反思与探索
在学习数的运算的过程中,我们的课堂除了要为学生营造一种
生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!
掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。
在应用中提升我们喜欢做这样的练习!
(在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)
你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)
(1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?
(学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)
(2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?
(3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家
出发,小时行驶了50千米,已知陈晨家到爷爷家有100千
米的距离,他们1小时能到达吗?
(有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)
反思与探索
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
《分数除以整数》教学反思8
出示这样一组信息:
出示:一只小鸟小时飞行12千米。1小时行多少千米?
你会用线段图表示条件吗? (师生一起画出线段图)
求小鸟1小时飞行多少千米,算式怎么列?
这是整数除以分数(板书课题)
1、12÷怎样计算呢?
学生可能有以下三种方法:
(1) 12÷=12÷0.2 (这是转化成整数除以小数进行计算。)
你还能否根据线段图发现不同的解法呢?
(2) 12×5 (这是根据线段图理解的。)
为什么乘5?能在图中解释一下吗?
(3) 12÷1×5 (说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)
(4) (12×5)÷(×5)=60 (这是根据商不变的规律进行计算的。)
师:从计算上面来看似乎第二种算法最简单!
这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)
师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷= 12×5,那这个结论到底对不对呢?我们一起在来看例题。
教学反思:
课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。
《分数除以整数》教学反思9
《小学数学课程标准》中明确地指出,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这节课中“动手操作”是学生在理解算理的思维过程中建立表象的必要手段。通过学生分一分、画一画,理解4/5和1/2的意义,同时感受到了结果2/5是怎样来的过程。学生在这一过程中,建立了2/5的表象,既可以表示4个1/5*均分成2份,也可表示求4/5的1/2是多少。通过这一过程,学生已经为后面算理的概括,提供了第一手、不可缺少的感性材料。
然后再出现“如果4/5升果汁*均分给3个小朋友喝,每人喝多少升?”,让学生用上述方法来解决这一问题4/5÷3。引发认知冲突,从而得出第二种方法,也就是“分数除以整数(0除外),就是分数乘以这个数的倒数”。
让学生真正地从分数意义和分数乘法的意义上去理解分数除以整数的计算算理。其实也在渗透着一种“转化”的数学思想,让学生感受到在解决问题时,我们可以把一些新的问题转化成已有的方法来进行解决。而方法上的比较只是为了在方法上的`取舍。
通过一节课的教学,课堂作业的反馈,本人发现,学生在做题目时会出现这样的错误,
一、除号变成乘号,但除数没有变成它的倒数。
二、分子和整数直接约分,计算。
三、把被除数和除数都变成了它的倒数,然后约分计算。
要针对以上错误情况,教给学生正确的计算方法。
《分数除以整数》教学反思10
本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数*均分成几份,就是求这个数的几分之一是多少”。
首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;
然后,设置问题情境,让学生先猜测分数除以整数的计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数*均分成几份,就是求这个数的几分之一是多少”,的意义。
练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。
分数除以整数教案5篇(扩展2)
——分数除以整数教学设计10篇
分数除以整数教学设计1
学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法
教学难点:
掌握分数除以整数的算理
教学设计:
一.创设情景导入
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算
二.引入新课
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/2 15×1/3
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
四.自主学习,合作探究
现在老师手中有4/5升的果汁,现在要把这杯果汁*均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁*分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探
你还有什么不明白的地方吗?共同探讨六.课堂检测
练习:用你发现的规律计算下面各题。 4/5÷3=
2/9÷2=
1/3÷4=
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以整数教学设计2
教学目标:
通过自主探究、合作交流,理解整数除以分数的计算方法。
能正确计算整数除以分数,并能解决简单的数学问题。
学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。
教学过程:
一、引入课题。
1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢
2.有这样一组信息:
出示:一只鸽子小时飞行12千米。1小时行多少千米
你会用线段图表示条件吗
求鸽子1小时飞行多少千米,算式怎么列
这是整数除以分数(板书课题)
二、探究新知。
1、12÷怎样计算呢你能否根据线段图发现不同的解法呢
学生可能有以下三种方法:
① 12÷=12÷0.2
这是转化成整数除以小数进行计算。
② 12×5
为什么乘5能在图中解释一下吗
③ 12÷=60
2、12÷的结果是多少你是怎么想的
学生可能会有:
①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。
②12÷等于乘的倒数。
提问:你怎么想到的
从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办
3、出示下面两题,请学生解答并说出思考过程。
1.蜜蜂
2.猫
这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢
4、出示:
一只蝴蝶小时可飞行( )千米,1小时可飞行多少千米
你想知道四分之几小时飞行的千米数为什么
补充小时可飞行24千米。
算式怎么列怎样计算呢先独立思考,然后小组讨论。
学生可能有:
24×,24×3÷4,24××4,24÷3+24,24÷0.75
如果24×是正确的,结果应是相同的,验证一下。
这些算式之间有没有内在的联系呢能否转化成24×呢
教师引导完成:
5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。
(若有化成除以小数的,提问:两种计算方法,哪种更好)
计算整数除以分数,哪种方法最方便
三、巩固练习
①4÷2/3=4×( ) 2÷1/5=2×( )
②p35.练一练1
③计算8÷2/3 10÷15/16
四、解决问题
苍蝇小时可飞4千米
蝙蝠小时可飞4千米
游戏 a÷2/3÷3/4
机动:
榨油机2/5小时榨油360千克,1小时榨油多少千克 ?
有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯 ?
分数除以整数教学设计3
学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法
教学难点:
掌握分数除以整数的算理
教学设计:
一.创设情景导入
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算
二.引入新课
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/2 15×1/3
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
四.自主学习,合作探究
现在老师手中有4/5升的果汁,现在要把这杯果汁*均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁*分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探
你还有什么不明白的地方吗?共同探讨六.课堂检测
练习:用你发现的规律计算下面各题。 4/5÷3=
2/9÷2=
1/3÷4=
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以整数教学设计4
教学目标:
通过自主探究、合作交流,理解整数除以分数的计算方法。
能正确计算整数除以分数,并能解决简单的数学问题。
学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。
教学过程:
一、引入课题。
1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢
2.有这样一组信息:
出示:一只鸽子小时飞行12千米。1小时行多少千米
你会用线段图表示条件吗
求鸽子1小时飞行多少千米,算式怎么列
这是整数除以分数(板书课题)
二、探究新知。
1、12÷怎样计算呢你能否根据线段图发现不同的解法呢
学生可能有以下三种方法:
①12÷=12÷0.2
这是转化成整数除以小数进行计算。
②12×5
为什么乘5能在图中解释一下吗
③12÷=60
2、12÷的结果是多少你是怎么想的
学生可能会有:
①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。
②12÷等于乘的倒数。
提问:你怎么想到的
从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办
3、出示下面两题,请学生解答并说出思考过程。
1.蜜蜂
2.猫
这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢
4、出示:
一只蝴蝶小时可飞行()千米,1小时可飞行多少千米
你想知道四分之几小时飞行的千米数为什么
补充小时可飞行24千米。
算式怎么列怎样计算呢先独立思考,然后小组讨论。
学生可能有:
24×,24×3÷4,24××4,24÷3+24,24÷0.75
如果24×是正确的,结果应是相同的,验证一下。
这些算式之间有没有内在的联系呢能否转化成24×呢
教师引导完成:
5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。
(若有化成除以小数的,提问:两种计算方法,哪种更好)
计算整数除以分数,哪种方法最方便
三、巩固练习
①4÷2/3=4×()2÷1/5=2×()
②p35.练一练1
③计算8÷2/310÷15/16
四、解决问题
苍蝇小时可飞4千米
蝙蝠小时可飞4千米
游戏a÷2/3÷3/4
机动:
榨油机2/5小时榨油360千克,1小时榨油多少千克?
有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯?
分数除以整数教学设计5
创境激疑
(一)导入
1.复习:什么叫分数?
2.用分数表示出下面各图的涂色部分。(出示教具)请学生分别说出每个分数的意义。
合作探究
(二)教学实施
1.提问:比较上面三个分数的分子与分母的大小?
这些分数比1大还是比1小?并说明理由。
2.学生观察后,试着回答。
学生:(第一个圆)*均分成了3份,这样的3份也
是一个整圆,表示1,而涂色部分只有1份,所以比l小。再请学生分别说出另外两个分数。
3.老师指出:像上面的3个分数都是真分数。我们过去接触过的分数,大都是真分数。那么,你能说说什么叫真分数吗?
4.让学生独立思考后,与同桌交流一下,再指名回答。
5.小结:分子比分母小的分数叫做真分数。真分数小于1。
6.老师再出示例2中图形的教具。
7.请学生分别用分数表示每组图形中的阴影部分。
提问:第一幅图中,把一个圆*均分成几份?表示有这样的几份?怎样用分数表示?
老师强调:第二组图和第三组图中每个圆都表示“1”。
拓展应用
1.在分数a/b中,当a小于时,它是真分数;当a大于或等于时,它是假分数。
2.在分数b/a中,当a小于或等于时,它是假分数;当a大于时,它是真分数。
3.分数单位是的最小真分数是(),最小假分数是。
4.写出两个大于的真分数和。
总结
通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分母相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。
作业布置
教材54页做一做
板书设计
教学札记
分数除以整数教学设计6
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 【设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。】
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
【设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。】
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
【设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。】
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
【设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。】
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
【设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。】
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计7
【学情分析】
六年级学生是在掌握了整数除法的意义、分数乘法的意义,计算及其应用基础上来学习分数除法的。高年级学生喜欢通过动手来解决相关问题,而不是老师简单的灌输。分数除法算理的探索与理解是教学的一个难点,根据小学生的思维特点采用手脑并用、数形结合的策略加以突破更能激发学生学习的乐趣。
【教材解读】
例1以折纸活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。教材分两个层次编排,先解决分数的分子能被整数整除的特殊情况;再引出分子不能被整数整除的情况。教材体现了让学生经历由特殊到一般的探索过程,进而理解把一个书*均分成几份,求其中的一份,也就是求这个数的几分之一输多少,渗透转化的数学思想。
【教学内容】
教科书第30页,做一做,34页练习七1-3题。
【教学目标】
1.通过观察实物图,理解分数除法的意义。
2.理解分数除以整数的计算法则的推导过程,会正确的进行分数除以整数计算。
3.培养学生归纳概括的能力。
【教学重点】
理解并掌握分数除以整数的计算方法。
【教学难点】
渗透转化的的数学思想,培养学生的归纳概括能力。
【教具准备】
长方形纸几张不同颜色彩笔几支幻灯片
【教学过程】
一、孕伏新知
1.投影仪出示:
①找出下列各数的倒数。
20怎样很快地找到一个不为零的整数的倒数?
②根据10×3=30改写成两道除法算式。
改写的依据是什么?
2.引导学生说说整数除法的意义。
[设计意图:充分利用学生已有知识,以旧引新,为学习新知做好铺垫。]
二、动手操作,探究新知
1.学生尝试列算式÷2。
2.独立思考÷2的计算方法。
3.汇报交流。
方法一:÷2=0.8÷2=0.4 454545方法二:÷2=454?25=254.通过折一折的方法验证这道题的答案。
(1)拿出准备好的白纸,请学生利用手中的白纸尝试解决或验证答案。
(2)先将这张*均分成6份,再将其中的4份用颜色表示出来。
(3)再将涂了色的部分*均分成2份,其中的一份用另一种颜色表示出来,这其中的一份就是这张纸的几分之几。
(4)看着自己手中的纸,请学生说出正确答案。
[设计意图:让学生借助自己动手折叠的长方形或根据自己在征数除法理解的意义的基础上对分数除法意义的理解解决分数除法的问题,一方面帮助学生进一步体会分数除法的意义,另一方面让学生体会分数除法的计算方法,也为总结分数除法的计算法则做必要准备。]
5.思考:如果分数不能化成有限小数时怎么办?我们每一道分数除法分子不能将分母除尽时怎么办?
学生根据教师的质疑继续深入探究分数除以整数的计算方法。
6.根据我们的折纸过程,你发现计算÷2,就是计算它的几分之几?所以我们不难发现方法三:÷2=× =。出示问题:如果把这张纸的*均分成3份,每份是这张纸的几分之几?
(1)生独立列出算式。
(2)选择算法。
通过观察:0.8÷3除不尽,4÷3也除不尽,应该选择方法三。
(3)学生独立计算。
(4)组织交流。
板书:÷3=×=454514 315
8.比较三种方法,进行方法优化。
方法一和方法二都有一种局限性,方法三是运用转化的思想把分数除法转化成分数乘法来计算具有一般性,是较好的一种计算方法。
9.总结分数除以整数的计算方法。
是不是所有的整数都能当除数?为什么?小结计算方法。板书:分数除以整数(0除外),等于分数乘这个整数的倒数。
[设计意图:再次给学生创设探究的空间,让学生自己想计算的方法,自己总结计算的方法,自己运用计算方法,尽量把学生推向学习的主体地位。教师仅在学生的疑惑处或计算的关键处给以提示或强调。]
三、巩固练习,夯实基础
1.教材30页的“做一做”。
练习时让学生独立完成,师巡回指导。
2.教材34页“练习七”第1题。
先让学生在书上独立填空,再说说根据什么填空的。
3.教材34页“练习七”第2题。
先组织学生观察左右两题之间的关系,交流后让学生填一填。
4.教材34页“练习七”第3题。找学生上黑板完成,集体订正。
四、拓展练习,小结提升
1.一瓶饮料的容量是升,升分一瓶,能分几瓶?
生独立思考,列出算式,由题目可以得出5瓶的结论,主要思考÷=5的计算过程,拓展引出分数除以分数的计算方法。
2.今天我们通过动手折一折、算一算的方法总结出了分数除法的计算方法:分数除以一个不为零的整数,就是乘这个数的倒数。
【板书设计】
分数除以整数方法一:÷2=0.8÷2=0.4方法二:÷2=454?255414541445=251244方法三:÷2=× =2555分数除以整数(0除外),等于分数乘这个整数的倒数。
分数除以整数教学设计8
【学情分析】
六年级学生是在掌握了整数除法的意义、分数乘法的意义,计算及其应用基础上来学习分数除法的。高年级学生喜欢通过动手来解决相关问题,而不是老师简单的灌输。分数除法算理的探索与理解是教学的一个难点,根据小学生的思维特点采用手脑并用、数形结合的策略加以突破更能激发学生学习的乐趣。
【教材解读】
例1以折纸活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。教材分两个层次编排,先解决分数的分子能被整数整除的特殊情况;再引出分子不能被整数整除的情况。教材体现了让学生经历由特殊到一般的探索过程,进而理解把一个书*均分成几份,求其中的一份,也就是求这个数的.几分之一输多少,渗透转化的数学思想。
【教学内容】
教科书第30页,做一做,34页练习七1-3题.【
教学目标】
1.通过观察实物图,理解分数除法的意义。
2.理解分数除以整数的计算法则的推导过程,会正确的进行分数除以整数计算。 3.培养学生归纳概括的能力。
【教学重点】
理解并掌握分数除以整数的计算方法。
【教学难点】
渗透转化的的数学思想,培养学生的归纳概括能力。
【教具准备】
长方形纸几张不同颜色彩笔几支幻灯片
【教学过程】
一、孕伏新知1.投影仪出示:
①找出下列各数的倒数。
20怎样很快地找到一个不为零的整数的倒数?
②根据10×3=30改写成两道除法算式。
改写的依据是什么?
2.引导学生说说整数除法的意义。
[设计意图:充分利用学生已有知识,以旧引新,为学习新知做好铺垫。]
二、动手操作,探究新知1.学生尝试列算式÷2。 2.独立思考÷2的计算方法。 3.汇报交流。
方法一:÷2=0.8÷2=0.4 454545方法二:÷2=454?25=
254.通过折一折的方法验证这道题的答案。
(1)拿出准备好的白纸,请学生利用手中的白纸尝试解决或验证答案。
(2)先将这张*均分成6份,再将其中的4份用颜色表示出来。
(3)再将涂了色的部分*均分成2份,其中的一份用另一种颜色表示出来,这其中的一份就是这张纸的几分之几。
(4)看着自己手中的纸,请学生说出正确答案。
[设计意图:让学生借助自己动手折叠的长方形或根据自己在征数除法理解的意义的基础上对分数除法意义的理解解决分数除法的问题,一方面帮助学生进一步体会分数除法的意义,另一方面让学生体会分数除法的计算方法,也为总结分数除法的计算法则做必要准备。] 5.思考:如果分数不能化成有限小数时怎么办?我们每一道分数除法分子不能将分母除尽时怎么办?
学生根据教师的质疑继续深入探究分数除以整数的计算方法。 6.根据我们的折纸过程,你发现计算÷2,就是计算它的几分之
451244几?所以我们不难发现方法三:÷2=× =
25557.出示问题:如果把这张纸的*均分成3份,每份是这张纸的几分之几?
4
5(1)生独立列出算式。
(2)选择算法。
通过观察:0.8÷3除不尽,4÷3也除不尽,应该选择方法三。
(3)学生独立计算。
(4)组织交流。
板书:÷3=×=
454514 315 8.比较三种方法,进行方法优化。
方法一和方法二都有一种局限性,方法三是运用转化的思想把分数除法转化成分数乘法来计算具有一般性,是较好的一种计算方法。
9.总结分数除以整数的计算方法。
是不是所有的整数都能当除数?为什么?小结计算方法。板书:分数除以整数(0除外),等于分数乘这个整数的倒数。
[设计意图:再次给学生创设探究的空间,让学生自己想计算的方法,自己总结计算的方法,自己运用计算方法,尽量把学生推向学习的主体地位。教师仅在学生的疑惑处或计算的关键处给以提示或强调。]
三、巩固练习,夯实基础1.教材30页的“做一做”。
练习时让学生独立完成,师巡回指导。 2.教材34页“练习七”第1题。
先让学生在书上独立填空,再说说根据什么填空的。 3.教材34页“练习七”第2题。
先组织学生观察左右两题之间的关系,交流后让学生填一填。 4.教材34页“练习七”第3题。找学生上黑板完成,集体订正。
四、拓展练习,小结提升
1.一瓶饮料的容量是升,升分一瓶,能分几瓶?
生独立思考,列出算式,由题目可以得出5瓶的结论,主要思考÷=5的计算过程,拓展引出分数除以分数的计算方法。
2.今天我们通过动手折一折、算一算的方法总结出了分数除法的计算方法:分数除以一个不为零的整数,就是乘这个数的倒数。
【板书设计】
分数除以整数方法一:÷2=0.8÷2=0.4 方法二:÷2=454?255414541445=251244方法三:÷2=× =2555分数除以整数(0除外),等于分数乘这个整数的倒数。
分数除以整数教学设计9
学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法
教学难点:
掌握分数除以整数的算理
教学设计:
一.创设情景导入
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算
二.引入新课
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/2 15×1/3
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
四.自主学习,合作探究
现在老师手中有4/5升的果汁,现在要把这杯果汁*均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁*分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探
你还有什么不明白的地方吗?共同探讨六.课堂检测
练习:用你发现的规律计算下面各题。 4/5÷3=
2/9÷2=
1/3÷4=
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以整数教学设计10
一、教学目标
(一)知识与技能
在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。
(二)过程与方法
结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。
(三)情感态度和价值观
在数学学习过程中培养分析能力、知识的迁移能力、推理能力。
二、教学重难点
教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。教学难点:对分数除以整数的算理的理解。
三、教学准备
多媒体课件,折纸。
四、教学过程
(一)引入操作情境,尝试计算教学教材第30页例1。
教师:把一张纸的*均分成2份,每份是这张纸的几分之几?
教师:你会列式吗?(启发学生列出算式。)
教师:你会计算吗?请你试一试,然后在组内交流一下你的想法。预设结果:
1.把*均分成2份,就是把4个*均分成2份,1份就是2个,就是;用算式表示是:。
2.把*均分成2份,每份就是的,就是;用算式表示是:。
【设计意图】该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。
(二)借助直观,实现沟通
教师:你能通过折纸的方法来验证你的结果吗?(指导学生动手操作:拿出事先准备好的一张纸,先折出这张纸的
涂上阴影,然后再把阴影部分*均分成2份。)
预设:学生可能会做出如下两种图示:
教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。
结合图(1),引导学生说理:把x*均分成2份,就是把4个*均分成2份,1份就是2个,就是。
结合图(2),引导学生说理:把x*均分成2份,每份就是的,就是。
教师:同学们说得很好!把一个数*均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。
【设计意图】分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。
(三)体验冲突,发现一般规律
教师:把一张纸的*均分成3份,每份是这张纸的几分之几呢?
请你折一折、画一画,自己看图写出计算结果。想一想,你会选择哪一种折法呢?
教师:你会用刚才的方法说明计算结果吗?
预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把*均分成3份,每份就是的,即。
教师引导学生折一折、画一画,或者根据教材第30页图示进行填空,写出计算结果。教师:通过刚才的折纸操作和上面的算式,你发现了什么规律?预设结果:
1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。
2.把一个数*均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。
教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。
【设计意图】通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数*均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。
(四)应用规律,尝试练习
教师:请你独立思考并完成教材第30页“做一做”。
【设计意图】对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数*均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。
(五)巩固练习,熟练算法
1.教师:请你完成教材第34页练习七第
1、2题。
先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。
2.教师:请你完成教材第34页练习七第4题。
左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。
3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。
引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。
(六)全课总结,交流收获
教师:今天我们共同学习了什么知识?你有什么收获?
分数除以整数教案5篇(扩展3)
——分数除以整数教学设计10篇
分数除以整数教学设计1
教学目标:
1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。
2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。
3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。
教学准备:
多媒体课件、小黑板。
教学过程:
从生活中引入计算也可以如此有趣!
1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?
(学生议论纷纷;师:多了,少了,差不多了)
这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)
2、 创设情境:前面提到中秋节,这可是我们*人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。
出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了
※ 在经历中体验这样的探究很有意思!
1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?
2、 引导估算:(在师生合作完成线段图后)出示完整的线段图
提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?
怎么能看出来?说出你的想法。
1小时行?千米
小时行?千米
小时行18千米
(思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)
3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)
4、 交流分析:
1、学生代表汇报结果,有以下几种算法:
a、18310 = 60(千米) 先求1份即小时行的,再求10份;
b、180.3 = 60(千米) 把小时化成小数0.3小时;
c、18(103)= 60(千米)先求总长是已经行的路程的几倍;
d、18=18=60(千米)
利用数量关系速度=路程时间,直接乘除数的倒数。
2、让学生充分阐释前几种算法的算理。
3、教师重点引导方法d的证明与理解。
指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。
而这是一道分数除法算式, 18 =18=60(千米)
你是又根据什么来列式的? (板书:速度=路程时间)
与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)
追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?
A利用线段图说明算理:
学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)
1小时行?千米
小时行?千米
18千米 18千米 18千米
B用其他方法验证算理:
谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。
师随即板书思路18310=1810=18=60(千米)
18(103) = 18=60(千米)
5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的一个重要思路。
那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)
6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?
反思与探索
在学习数的运算的过程中,我们的课堂除了要为学生营造一种
生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!
掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。
在应用中提升我们喜欢做这样的练习!
(在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)
你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)
(1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?
(学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)
(2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?
(3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家
出发,小时行驶了50千米,已知陈晨家到爷爷家有100千
米的距离,他们1小时能到达吗?
(有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)
反思与探索
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
分数除以整数教学设计2
教学目标:
通过自主探究、合作交流,理解整数除以分数的计算方法。
能正确计算整数除以分数,并能解决简单的数学问题。
学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。
教学过程:
一、引入课题。
1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢
2.有这样一组信息:
出示:一只鸽子小时飞行12千米。1小时行多少千米
你会用线段图表示条件吗
求鸽子1小时飞行多少千米,算式怎么列
这是整数除以分数(板书课题)
二、探究新知。
1、12÷怎样计算呢你能否根据线段图发现不同的解法呢
学生可能有以下三种方法:
① 12÷=12÷0.2
这是转化成整数除以小数进行计算。
② 12×5
为什么乘5能在图中解释一下吗
③ 12÷=60
2、12÷的结果是多少你是怎么想的
学生可能会有:
①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。
②12÷等于乘的倒数。
提问:你怎么想到的
从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办
3、出示下面两题,请学生解答并说出思考过程。
1.蜜蜂
2.猫
这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢
4、出示:
一只蝴蝶小时可飞行( )千米,1小时可飞行多少千米
你想知道四分之几小时飞行的千米数为什么
补充小时可飞行24千米。
算式怎么列怎样计算呢先独立思考,然后小组讨论。
学生可能有:
24×,24×3÷4,24××4,24÷3+24,24÷0.75
如果24×是正确的,结果应是相同的,验证一下。
这些算式之间有没有内在的联系呢能否转化成24×呢
教师引导完成:
5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。
(若有化成除以小数的,提问:两种计算方法,哪种更好)
计算整数除以分数,哪种方法最方便
三、巩固练习
①4÷2/3=4×( ) 2÷1/5=2×( )
②p35.练一练1
③计算8÷2/3 10÷15/16
四、解决问题
苍蝇小时可飞4千米
蝙蝠小时可飞4千米
游戏 a÷2/3÷3/4
机动:
榨油机2/5小时榨油360千克,1小时榨油多少千克 ?
有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯 ?
分数除以整数教学设计3
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计4
学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法
教学难点:
掌握分数除以整数的算理
教学设计:
一.创设情景导入
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算
二.引入新课
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/2 15×1/3
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
四.自主学习,合作探究
现在老师手中有4/5升的果汁,现在要把这杯果汁*均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁*分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探
你还有什么不明白的地方吗?共同探讨六.课堂检测
练习:用你发现的规律计算下面各题。 4/5÷3=
2/9÷2=
1/3÷4=
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以整数教学设计5
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重难点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3×××6
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
×3=(千克)÷3=(千克)÷=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的*均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的*均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
(4)如果把这张纸的*均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3÷20÷5÷6
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
板书设计:
分数除以整数
甲数÷乙数(0除外)=甲数×乙数的倒数
(1)300÷3==100(2)÷3=×==
分数除以一个数(0除外)等于分数乘这个数的倒数。
分数除以整数教学设计6
分数乘分数教案
教学目标:
知识与技能:理解分数乘分数的意义,掌握分数乘分数的计算法则。
过程与方法:经历解决问题和计算的过程,体验归纳推理的学习方法。
情感态度与价值观:感受数学与生活之间的联系,激发学生学习数学的兴趣,养成勤于思考的良好习惯。
教学重点:
掌握分数乘分数的计算法则。
突破方法:
引导学生分析,解决实际问题,组织学生合作探究,讨论归纳计算法则。
教学难点:
推导算理,总结法则。
教法与学法:
教法:情境教学
学法:小组合作,学习交流。
教学过程:
一、情境引入:
1、小明请小强到家里做客,请小强吃西瓜,先切了一半留给自己的父母,两人吃的各占了西瓜一半的一半,问小明吃了整个西瓜的几分之几?
师:该怎么列式
前面我们学习的是整数与分数与分数相乘,这题都是分数乘分数,你能写出这样的算式吗?
设计意图:创设情境,激发学生求知欲望。
2、观察这些算式,认为哪一些算式算起来会容易些?
二、探索算法:
(一)几分之一乘几分之一
1、请学生选择几道几分之一乘几分之一乘法算式,尝试计算。
2、汇报计算情况,提出计算方法。
3、举例说明或验证计算方法及结果。
4、小组内交流验证计算方法及结果。
5、组际交流。
6、小结几分之一和几分之一相乘的计算方法:分子相乘的积作积的分子,分母相乘的积作积的分母。
(二)一般分数相乘
1、小组合作探究:
(1)猜想一般分数相乘的计算方法。
(2)请举例验证。
(3)准备汇报。
2、组际交流
3、总结分数乘分数的计算法则。分数乘分数:分子相乘的积作积分子,分母相乘的积作的分母。
4、沟通所有分数乘法的计算方法。以前还学过哪些关于分数的乘法?他们有什么共同点?
1、学生独立写出几个算式。汇总到黑板上。
2、学生观察得出:几分之一和几分之一相乘。
3、举例说明或验证计算方法及结果。
4、小组交流个体学习情况
5、组际交流可能出现的方法:
(1)把分数化成小数计算
(2)根据分数乘法的意义
6、学生按要求活动。
7、组际交流:学生可能出现的情况
(1)可以看作是——
(2)画图:把长方形的纸先用阴影表示出,再表示阴影部分的,然后打开看一看得到的阴影是整个长方形的几分之几。
(3)化成小数计算。(能化成小数的)
三、教师辅导
1、教师进行个别辅导,并了解学生的计算及验证情况。
2、教师指导和参与讨论。
四、反馈提高,巩固计算
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
附:教学设计说明
《分数乘分数》一课是河北省九年义务教育教材小学数学第十一册第二单元的内容,是在学习了分数整数、整数乘分数,理解了分数乘法的意义后进行学习的。分数乘法在掌握了法则以后,计算并不复杂,因此在本节课中我们力图体现“让学生自己提出、验证计算方法,培养探究问题能力,体现算法多样化”的总体思路。
一、充分开放教学过程,促进学生主动参与
整节课设计为三个阶段,每个阶段都提供了学生充分参与的机会。引入阶段,在情景的支持下让学生自己提出并确定学习、研究的材料;展开阶段,分两个层次让学生提出“分数乘分数”的计算方法,并通过独立思考、合作研究来展示、证明自己的计算方法,使研究过程体现开放与自主,努力营造个性化的学习方式,以促进各个层次学生的交流与发展。
二、充分展示知识的发生、发展与联系,使学生经历学习过程
《分数乘分数》一课,从情景入手,把较复杂的“分数乘分数”的计算方法,设计成用学生自己创造的方法来展示和验证,有利于学生更好地获得和理解计算方法。课堂的“展开”阶段,从解决“几分之一与几分之一相乘”到“两个一般分数相乘”,力图体现由浅入深、由易到难的探究过程。使学生在“探究算法——操作验证——交流评价——法则统整”等的一系列活动中经历“分数乘分数”计算法则的形成过程,感受知识间的内在联系,同时渗透数学研究的思想方法,培养学生探索问题的能力。
三、以数学知识为载体,体现《课程标准》精神,促进学生探索
本节课的设计力图以“分数乘分数”这一数学知识为载体,通过学生主动参与、发现问题、解决问题的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革的精神。教学大纲上明确指出:“小学数学教学要使学生既长知识又长智慧,要遵循学生的认识规律,重视学生获取知识的思维过程。”通过学生自己动手研究,推导“分数乘分数”的计算方法,并进行展示交流。呈现多样化的算法,能较好地使学生感受到学习的成功和研究的乐趣,即使学生在理解掌握方法的现时提高解决问题的能力,又利于学生形成良好的数学情感与价值观。
分数除以整数教学设计7
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)
方法2:×3=++====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书:++=×3
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+++=()×()
+++++++=()×()
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4×6×21×4×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是*方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)
用乘法算:×3=++====(块)
答:3人一共吃了块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数除以整数教学设计8
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 【设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。】
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
【设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。】
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
【设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。】
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
【设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。】
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
【设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。】
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计9
【学情分析】
六年级学生是在掌握了整数除法的意义、分数乘法的意义,计算及其应用基础上来学习分数除法的。高年级学生喜欢通过动手来解决相关问题,而不是老师简单的灌输。分数除法算理的探索与理解是教学的一个难点,根据小学生的思维特点采用手脑并用、数形结合的策略加以突破更能激发学生学习的乐趣。
【教材解读】
例1以折纸活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。教材分两个层次编排,先解决分数的分子能被整数整除的特殊情况;再引出分子不能被整数整除的情况。教材体现了让学生经历由特殊到一般的探索过程,进而理解把一个书*均分成几份,求其中的一份,也就是求这个数的几分之一输多少,渗透转化的数学思想。
【教学内容】
教科书第30页,做一做,34页练习七1-3题.【
教学目标】
1.通过观察实物图,理解分数除法的意义。
2.理解分数除以整数的计算法则的推导过程,会正确的进行分数除以整数计算。 3.培养学生归纳概括的能力。
【教学重点】
理解并掌握分数除以整数的计算方法。
【教学难点】
渗透转化的的数学思想,培养学生的归纳概括能力。
【教具准备】
长方形纸几张不同颜色彩笔几支幻灯片
【教学过程】
一、孕伏新知1.投影仪出示:
①找出下列各数的倒数。
20怎样很快地找到一个不为零的整数的倒数?
②根据10×3=30改写成两道除法算式。
改写的依据是什么?
2.引导学生说说整数除法的意义。
[设计意图:充分利用学生已有知识,以旧引新,为学习新知做好铺垫。]
二、动手操作,探究新知1.学生尝试列算式÷2。 2.独立思考÷2的计算方法。 3.汇报交流。
方法一:÷2=0.8÷2=0.4 454545方法二:÷2=454?25=
254.通过折一折的方法验证这道题的答案。
(1)拿出准备好的白纸,请学生利用手中的白纸尝试解决或验证答案。
(2)先将这张*均分成6份,再将其中的4份用颜色表示出来。
(3)再将涂了色的部分*均分成2份,其中的一份用另一种颜色表示出来,这其中的一份就是这张纸的几分之几。
(4)看着自己手中的纸,请学生说出正确答案。
[设计意图:让学生借助自己动手折叠的长方形或根据自己在征数除法理解的意义的基础上对分数除法意义的理解解决分数除法的问题,一方面帮助学生进一步体会分数除法的意义,另一方面让学生体会分数除法的计算方法,也为总结分数除法的计算法则做必要准备。] 5.思考:如果分数不能化成有限小数时怎么办?我们每一道分数除法分子不能将分母除尽时怎么办?
学生根据教师的质疑继续深入探究分数除以整数的计算方法。 6.根据我们的折纸过程,你发现计算÷2,就是计算它的几分之
451244几?所以我们不难发现方法三:÷2=× =
25557.出示问题:如果把这张纸的*均分成3份,每份是这张纸的几分之几?
4
5(1)生独立列出算式。
(2)选择算法。
通过观察:0.8÷3除不尽,4÷3也除不尽,应该选择方法三。
(3)学生独立计算。
(4)组织交流。
板书:÷3=×=
454514 315 8.比较三种方法,进行方法优化。
方法一和方法二都有一种局限性,方法三是运用转化的思想把分数除法转化成分数乘法来计算具有一般性,是较好的一种计算方法。
9.总结分数除以整数的计算方法。
是不是所有的整数都能当除数?为什么?小结计算方法。板书:分数除以整数(0除外),等于分数乘这个整数的倒数。
[设计意图:再次给学生创设探究的空间,让学生自己想计算的方法,自己总结计算的方法,自己运用计算方法,尽量把学生推向学习的主体地位。教师仅在学生的疑惑处或计算的关键处给以提示或强调。]
三、巩固练习,夯实基础1.教材30页的“做一做”。
练习时让学生独立完成,师巡回指导。 2.教材34页“练习七”第1题。
先让学生在书上独立填空,再说说根据什么填空的。 3.教材34页“练习七”第2题。
先组织学生观察左右两题之间的关系,交流后让学生填一填。 4.教材34页“练习七”第3题。找学生上黑板完成,集体订正。
四、拓展练习,小结提升
1.一瓶饮料的容量是升,升分一瓶,能分几瓶?
生独立思考,列出算式,由题目可以得出5瓶的结论,主要思考÷=5的计算过程,拓展引出分数除以分数的计算方法。
2.今天我们通过动手折一折、算一算的方法总结出了分数除法的计算方法:分数除以一个不为零的整数,就是乘这个数的倒数。
【板书设计】
分数除以整数方法一:÷2=0.8÷2=0.4 方法二:÷2=454?255414541445=251244方法三:÷2=× =2555分数除以整数(0除外),等于分数乘这个整数的倒数。
分数除以整数教学设计10
教学目标:
1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。
教学重难点教学重点:分数除法意义的理解和分数除以整数的算法的探究。
教学难点:分数除以整数的算法的探究。
教具准备:课件,*均分成5份的长方形纸一张。
设计意图教学过程特色设计:
通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能
一、复习
复习整数除法的意义
引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
二、新授
(一)初步理解分数除法的意义。
1、如果将一盒重千克的水果*均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?
2、归纳概括分数除法的意义。
(二)分数除以整数。
1、出示例1、引导学生分析并用图表示数量关系。
问:求每份是这张纸的几分之几,怎样列式?
2、列式计算。
学生折一折,算一算。
3、理清思路。
学生说思路
4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
三、练习
第30页做一做
四、作业练习
教材P34第1、3、4题。
五、总结
今天我们学习了哪些内容?
板书设计:
略
分数除以整数教案5篇(扩展4)
——《假分数化成整数或带分数》教学设计3篇
《假分数化成整数或带分数》教学设计1
教学目标:
1、知道带分数是假分数,是整数与真分数合成的数。2、会把假分数化成整数或带分数。
3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。
教学重点:会把假分数化成整数或带分数。
教学难点:理解假分数化成整数或带分数的转化思路。
教学过程:
一、谈话导入:
最近我们一直在与数学王国中的一位朋友打交道,它就是分数。我们已经知道分数可以分成真分数和假分数,老师说几个分数你们来判断一下它是哪种分数?
谁还能举几个假分数的例子?(根据学生的回答有意识的板书成两类,同时选择1、2个分数让学生说说意义及其组成。)
二、探索建构。
(一)探索假分数化成整数的方法。
1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。
2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。
3、引导比较:将这些假分数化成整数,可以从假分数的意义这个角度去推算,也可以根据分数于除法的关系直接用分子除以分母,你比较喜欢哪种方法?为什么?
4、口答:将16/8、21/7、42/6转化成整数。
5、观察思考:这些能化成整数的假分数有什么特点?
6、师:你能不能也出几个能化成整数的假分数考考别人?
7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?
(二)探索假分数化成带分数的方法。
1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)
2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)
出示题目:读出下面带分数,并说说它的整数部分和分数部分。
621
3、师:4/3这个假分数和1这个带分数之间是什么关系呢?我们可以请数轴来帮忙解决。(出示数轴)请在数轴上找出4/3,1比1多还是少?又多出多少呢?(同样指名学生标出)这两个数我们在数轴上分别找到了它们的位置后,你有没有什么发现?
4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。
5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)
6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)
7、练习:让生继续试着把剩下来的假分数化成带分数。
8、师问:谁来概括一下,刚才是怎样把假分数转化成带分数的?
(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)
9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)
三、巩固练习。
1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。
2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。
3、练习九5。
出示题目:1=()/11=()/21=()/31=()/4
2=()/12=()/22=()/32=()/4
3=()/13=()/23=()/33=()/4
第一组指导学生完成,第二、三组让学生独立完成。
观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?
(板书:整数——假分数)
4、完成练习九6。
四、课作:练习九1、3;每日一题。
《假分数化成整数或带分数》教学设计2
教学内容:
54页例3及做一做,练习十三第4~10题
教学目标:
1.知识与技能:理解带分数的意义,能正确地读写带分数。使学生掌握假分数化成整数或带分数的方法,能正确地把假分数化成整数或带分数。
2.过程与方法:经历把假分数化成整数或带分数的方法过程,培养学生独立解决问题的能力。
3.情感态度价值观:培养学生团结合作的意识,养成良好的学习习惯。
重点难点:
假分数化成整数或带分数。
教学准备:
课件
教学过程:
一、复习导入
1.判断下面各数哪些是真分数,哪些是假分数。
2.观察以上的假分数,假分数可以分为几类?
3.揭示课题:假分数又可以改写成怎样的数呢?这节课我们来学习把假分数化成整数或带分数。(板书:假分数化成整数或带分数)
二、新课讲授
1.教学带分数的意义及读写方法。
(1)一个同学在吃橙子时说我吃了一个半。怎样用分数表示?
得到:一个半是1+ 的和,也可以写成1 。板书:1
(2)观察1 ,它是由哪两部分组成的?
板书
(3)提问:什么是带分数?
(板书:由整数和真分数合成的数叫做带分数)
(4)带分数的读法。
1 读作:一又二分之一
1 读作:一又四分之三
小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
2.教学例3:出示题目
(1)把假分数化成整数。
如何化简: =33=1 =84=2
你是怎样得到这两个结果的?
(2)把假分数化成带分数。
提问: 的分子不是分母的倍数,这种情况怎样转化?
提问: 化成带分数,怎样化简?
(3)小结:假分数化成整数或带分数的方法是什么?
①分子是分母的倍数时,化成整数,用分子除以分母,商是整数。
②分子不是分母的倍数时,化成带分数,用分子除以分母,商是带分数的整数部分,余数部分是分数部分的分子,分母不变。
三、巩固练习
1.做一做第2题:独立计算,集体订正。
2.练习十三的第4~8题。
3.作业:练习十三9题,选作10题。
四、课堂小结
今天我们学习了什么,你又有什么收获?
板书设计:
把假分数化成整数和带分数
由整数和真分数合成的数叫做带分数
=33=1 =84=2
=65=1
《假分数化成整数或带分数》教学设计3
教学目标
1、理解并掌握把整数、带分数化成假分数的方法,能正确地把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系,进行初步的辩证唯物主义观点的教育。
教学重点、难点
重点、难点:正确地把整数、带分数化成假分数。
教具、学具准备
教学过程
一、复习铺垫
1、把下面假分数化成整数或带分数
3/351/516/47/716/3
9/521/7121/1170/716/1
2、在括号里填上适当的数
1=()/31=()/41=()/9
二、教学新知
1、教学例4。
把1化成分母分别是2、3、4、5的分数。
(1)读题、理解题意后失声共同分析
1个圆可以分成2个1/2、3个1/3、4个1/4、5个1/5。
也就是:1=2/21=3/31=4/41=5/5所以1=2/2=3/3=4/4=5/5
(2)口答1=()/()=()/()=()/()=......
:1可以化成分母是任意自然数的假分数。
同理:整数可以化成分母是任意自然数的假分数。
2、教学例5。
(1)出示例5,读题理解题意,弄清题目要求。(所化的假分数的分母为3,必须把单位“1”*均分成3份。)
(2)边观察分析填数
()/3()/3()/3()/3
1234
看直线图,填上适当的数(3/3、6/3、9/3、12/3)。说出这些分数的分数单位是多少?各有几个这样的分数单位?
从以上可以看出,1里面有3个1/3,2里面有(3×2)个1/3,那么4里面有()1/3。
2=3×2/3=6/34=3×4/3=12/3
(3)把2和4化成分母是5的假分数。
(4)观察以上整数化成假分数的式子归纳。
整数化成假分数,用指定的分母作分母,用()和()相乘的"积作分子。
2=3×2/3=6/3
指定分母
(5)练一练:
①口答:8=()/76=()/310=()/5
2=()/77=()/14=()/12=()/1
观察最后3题,任何自然数可以化成分母是1的假分数。
②课本P89第一题。
3、教学例6。
把2又3/4化为假分数。
(1)读题后,学生思考、试做。
(2)出示图例观察分析,验证。
2里面有(4×2)个1/4,在加上3个1/4,一共是(4×2+3)个1/4,就是11个1/4(11/4)
(3)2又3/4=4×2+3/4=11/4
看式子归纳:带分数化成假分数,用原来的分母作分母,用()和()相乘的积,在加上原来的()作分子。
(4)练一练:
①课本P89页第二题。
②课本P89页第三题。
三、练习反馈。
1、把各组数化成分母相同的假分数。
3又1/7和42又5/8和1
2、比较6和15/2的大小。
A、四人小组讨论,你用什么方法进行比较。
B、讨论后再练习。
C、反馈不同的方法。
D、归纳:两个数相比较,可以把它们同时化为假份数后进行比较,也可以化成整数、带份数进行比较。
3、比较下面各组数的大小
51/3和15/313/2、6和61/3
练习后反馈比较。
四、课堂作业
课本P89第4题(3)(4)第5题第二行。
五、课后作业《作业本》
在教学过程中,我结合图形,较直观地让学生理解整数、带分数化成假分数的算理,并最终归纳出方法。所以学生掌握得比较扎实,课堂上气氛活跃,发言积极。
分数除以整数教案5篇(扩展5)
——分数乘整数的说课稿3篇
分数乘整数的说课稿1
一、说学情
了解自已的学生学习的情况是设计一个优秀的教学预案的重要前提,多好的教案,如果不符合你的学生,教学过程中也会漏洞百出,事倍功半。六(1)班学生半数基础不扎实,表现在数学语言理解能力差,计算能力低,归纳能力欠缺;更有部分学生不愿意参与课常学习。因此,怎样以形式多样的教学环节吸引学生参与课常,怎么样把知识点拉近生活的数学语言,便于学生理解将成了首要考虑的东西。
二、说教材
(一)教学内容:
本课教学内容是人教版小学数学六年级上册第8~9页分数乘整数,例1、例2及相应做一做,练习二第1~2题。
(二)教材地位和作用:
"分数乘整数"是在学生初步理解了分数的意义,掌握了分数的基本性质、分数加、减法计算的基础上编排的。通过本节内容的学习能进一步理解分数的意义,为本单元学习用分数乘法解决实际问题以及分数混合运算作好铺垫。教学要求是理解分数与整数相乘的算理、掌握算法,能应用于解决实际问题中去,在探索算法、总结法则的过程中发展数学思考的能力。
(三)教学目标:
根据我对教材的以上理解我确定了本课的教学目标
1、引导学生经历知识的迁移、自主观察、讨论、交流、推理、概括等教学活动,帮助学生主动理解分数乘整数的意义,建构分数乘整数的计算方法,培养学生的概括与推理能力,并能利用计算法则正确计算。
2、在学生经历自主学习、与他人合作,交流的过程、培养学生自学能力及主动探索的精神和与人合作的意识。
(四)教学重、难点
重点:分数和整数相乘的意义、计算法则。
难点:引导学生总结分数乘整数的计算法则。
三、说教法和学法
教师的教是为了学生的学,教师本课以"引学——导学——辅助归纳"作为教师的参与形式,对于本节课的内容学生并不陌生,有的学生可能已经会计算了,但很多学生可能只是凭借经验或直观知道计算方法,却并不知道为什么要这样算。因此本节课教学不能仅仅满足于学生会算,更重要的是要关注学生理解分数乘整数的意义,在理解算理的基础上掌握计算方法。教学中要充分利用学生已有知识经验和认知发展水*,为学生提供从事数学活动的机会,基于以上认识,我在本节课主要采用了以下几种教学方法:
(1)问题情境法:以教材的情境设计为依托,结合学生自身的生活经验为学生创设问题情境,引起学生对分数乘整数算式的关注,激发学生学习的兴趣和问题意识。
(2)"探究——研讨"法:当学生提出问题后,鼓励学生自己探究解决问题的方法,学生通过调动已有的知识储备,从而得到用加法及用乘法两种解决问题的方法,然后经过观察、比较、分析、归纳等一系列活动,发现规律,理解分数乘整数算式表达的意义,培养学生的语言表达能力和抽象概括能力。
(3)合作学习法:在独立思考和自主探索的基础上,组织引导学生动手实践,通过涂一涂,看一看,比一比等活动,进行小组间的合作与交流,帮助学生在多元交流中真正理解和掌握知识,教学中充分发挥小组合作的优势,让每一个学生都有发言的机会,从而真正理解分数乘整数的算理。
四、说教学过程
教学过程是教师引领学生走进知识,并用已有的知识能力解决每一个情境中大家提出的新问题,逐步形成新知识,并在研究的过程中引发思维的火花,增长新智慧,形成新能力。本节课我主要设计了"引入设疑——作图解疑——实践归纳——应用深化"四个教学程序:
(一)说说引入
①5个12的和是多少?怎样列式?(12×5)
②6个0.5的和呢?(0.5×6)
③3个1/7的和是多少?你会列式吗?(1/7×3)
教师由整数乘法到小数乘法再到分数乘整数,学生能够很快写出算式,但这个算式表示什么呢?如何运算呢?运算有何规律呢?这些问题将学生学习的欲望一下子提上来了,更好完成以下教学。
(二)说说合作探究、归纳解疑
例1:人跑一步的距离相当于袋鼠跳一下的2/11,人跑3步的距离是袋鼠跳一下的几分之几?
出示例题,以学生分组画线段图为载体,理解分数意义,分数乘整数的意义,算理,初步归纳:
(1)分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
(2)分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(三)运用新知、实践归纳
例2:3/8×6(学生独立计算)
灵活运用例2,把它当作是刚才学习的分数乘整数的一个练习,分小组探讨完成,并找出它与例1的相同的地方和不同的地方,板书后请学生评价三位同学的做法,判别最优方法。这一教学片断意在调动学生运用新知解决问题,提高学生参与学习的积极性。同时让学生归纳出"在计算分数乘整数时,能约分的可以先约分,再计算"。
⑵成果展示:生1:3/8×6=3x6/8=18/8
生2:3/8×6=3x6/8=18/8=9/4
生3:3/8×6=3x6/8=9/4(先约分,后乘)
(四)说练习应用深化
练习主要有三个:
(1)分数乘整数的意义"看图写分数乘整数算式"
(2)计算练习
(3)判断练习
以上练习再一次帮助学生主动理解分数乘整数的意义,建构分数乘整数的计算方法,培养学生准确的计算习惯。
(五)说反馈总结:今天这节课我们学习的什么内容?你有什么收获?
让学生自己说说本节课的收获,既是对本节课所学知识的回顾与整理,又可以培养学生的概括表达和自我评价的能力。
五、说板书
分数乘整数
2/11×3=2/11+2/11+2/11=2+2+2/11=2x3/11=6/11
分数和整数相乘,用分子和整数相乘的积作分子,分母不变。
分数乘整数的说课稿2
尊敬的各位评委、老师:
大家好!
我是13号,我说课的内容是北师大版小学数学五年级下册第1单元第一课《分数乘法》。下面我将从说教材、说教法、说学法、说教学程序和说板书设计五个方面来完成我的说课。
一、说教材:
《分数乘法》是在学生学习了整数乘法意义以及分数加减法基础上教学。本节主要内容求几个相同分数的和,将分数乘法与整数乘法相联系,并探索出分数乘整数计算方法。同时为以后分数成分数打基础。
根据新课标要求及教材内容,我从三方面确立目标。
1、结合具体情境,在操作活动中探索并理解分数乘整数意义,掌握分数乘整数计算方法。
2、在生经历探索分数乘整数的意义及计算方法的过程中,培养生观察、分析、概括等方面的能力。
3、能解决简单分数乘整数实际问题,体会数学与生活的密切联系。
根据教学目标,我将教学重点定为:
根据生实际情况,教学难点:理解分数乘整数算理,掌握方法。
二、说教法:
根据教材内容以及生年龄特点,采用多媒体演示法、启发式教学法、引导发现法、讲授法,通过观察探索,获取知识,激趣。通过启发引导,使学生的思维活动在师引导下层层展开,使他们听有所思,做有所获。教学中,我采用多媒体辅助教学,这样突出教学效果,优化课堂教学。
三、说学法:
在教学中,学生始终是学习的主体,教师要交给学生有效的学习方法,使学生学会学习。在本课的"教学中,依据教学内容,通过自主探究、动手实践、合作交流的学习方法,使学生理解分数乘法意义,掌握分数乘整数计算方法。这样可以充分调动学生学习的积极性和主动性,使学生不仅学会而且会学。
四、说教学程序:
根据本课教学目标,我设计了复习导入(约3)探索新知(约15)巩固应用(约20)课堂小结(约2)四个环节进行教学,具体如下:
(一)复习导入:多媒体出示:
1、把9+9+9+9+9改成乘法算式
2、列式计算:
(1)5个12是多少?12×5让学生列式并说出整数乘法的意义。“3个1/5是多少?怎样列式?能不能用算式1/5×3来表示呢?今天,我们就一起来学习分数乘法。”
(二)探索新知:多媒体出示教材2页情境。一个图案占整张纸的1/5,3个图案占整张纸的几分之几?怎样解决这个问题呢?请同学们先独立思考,然后同桌交流。学生汇报方法:有的学生是用画图的方法做的,先把一张纸*均分成5份,每份是1/5,就是一个图案,三个图案就是三份,也就是3/5。有的学生用连加的方法做的:列式是1/5+1/5+1/5(板书)同分母分数相加以前学过,分母不变分子相加,所以=1+1+1/5=3/5。还有的学生用乘法计算:列式3×1/5“这个算式表示什么?请同学交流讨论”。然后会发现3×1/5表示3个1/5的和是多少。也就是=1/5+1/5+1/5=1+1+1/5,分子是3个1想加,利用整数乘法意义=3×1/5=3/5师生共同归纳出:分数乘整数的意义与整数乘法意义相同,是求几个相同的分数和,可以用乘法计算。(这样设计,通过学生独立思考,培养学生自主探究能力,通过小组讨论交流,培养学生小组合作意识,这一环节体现了学生是学习的主体,要充分发挥学生学习的主动性)
接着多媒体出示教材“涂一涂,算一算”“2个3/7的和是多少?3个5/16的和是多少?”让学生独立解决。学生根据涂一涂的结果会列出这样的算式3/7×2=6/75/16×3=8/16“请同学们仔细观察这两个式子的分子分母与得数的分子分母有什么关系?有了想法后在小组内交流。”学生会发现:3/7×2=3×2/7=6/75/16×3=5×3/16=8/16也就是分子和整数相乘做分子,分母不变。这就是分数乘整数的计算方法。
“同学们通过观察,比较,交流,讨论我们理解了分数乘整数的意义是:求几个相同分数的和的简便运算,掌握了分数乘整数的计算方法是:分子和整数相乘做分子,分母不变。”
(三)巩固应用:练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习。
1、基本练习:教材3页“试一试”的1让学生独立完成,集体订正,巩固对知识的掌握。
2、提高练习:教材3页“做一做”让学生独立思考,通过算式比较以及教师适当指导,总结出:在计算过程中,能约分的要约分;最后结果应该是最简分数。
3、拓展练习:教材3页“试一试”的3。先让学生说一说是怎么想的,再全班交流经验,培养学生运用所学知识解决简单的实际问题。
(这样的设计由浅入深、环环相扣,既巩固了本节课的知识,又培养了学生解决问题的能力,发展了学生思维的灵活性。)
(四)课堂总结“通过今天的学习,你们有哪些收获?”学生谈收获,教师适时总结。
五、说板书设计
突出了教学的重点,解决了教学难点。使教学内容一目了然,便于学生理解掌握。
1/5+1/5+1/53×1/5
=1+1+1/5=1/5+1/5+1/5
=3/5=1+1+1/5
=3×1/5
=3/5
意义:求几个相同分数的和的简便运算
方法:分子和整数相乘做分子,分母不变。
以上是我的说课内容,谢谢各位评委老师!
分数除以整数教案5篇(扩展6)
——分数除以分数教学反思3篇
分数除以分数教学反思1
分数除以分数是学生在学习整数除以分数和分数除以整数的基础上学习的,就内容而言相当简单,因此我这堂课的教学目标的定位是主要是培养学生的归纳推理能力,渗透用字母表示数的数学思想。因此在教学中设计了三个环节:
1、回顾:我先让学生回顾我们前几天学的分数除法计算法则,并相机在黑板上用字母表示,而后让学生根据字母形式说说计算法则,让学生体验到用字母表示的简洁性。
2、探究:在这个环节中,让学生先估算,然后进行尝试计算中,因为受到前两节课知识的正迁移,班级中50人中有48人做对,针对学生学习的现实起点我直接让学生用自己的话说说分数除以分数的计算法则,学生回答非常精彩。最后学生比较“分数除以整数、整数除以分数、分数除以分数”有什么共同点,归纳出分数除法的计算法则,并鼓励用字母来表示。
3、延伸:在巩固练习后我让学生做一做“6÷9”和“6÷0.25”,学生惊奇地发现原来分数除法的计算法则同样适用于整数和小数除法。
应该来说我对这堂课是较满意的,因为我听到学生精彩的回答;看到了学生体验成功后的笑容;自身也体验到上课给我带来的愉悦。我高兴之余想到,新课程实施几年来,我们的教师拥有一些先进的理念,但少了一种把理论转化为实践的恒心。只有在课堂中体现自己的新理念,那我们的新课程一定会走的更远。
分数除以分数教学反思2
学生有了整数除以分数和分数除以整数的基础,所以在学习分数除以分数的时候显得较为轻松。同前面整数除以分数和分数除以整数课上一样,我在课上花了较多的时间和学生来画图,通过画图,让学生真正的理解其中的算理。
在总结分数除法的计算方法的时候,我未象书上一样用的“甲数除以乙数(0除外),等于甲数乘乙数的倒数。”而是让学生用被除数和除数来说一说,学生可以这样来说:“被除数除以除数(0除外),等于被除数乘除数的倒数。”我觉得这样学生应该更能理清究竟是怎样的计算方法,明白到底是哪个数乘哪个数的倒数。
本节课在练习十一第11题花的时间是比较多的,我是这样做的:
“学生先计算,然后分别把商与被除数比一比,你能发现什么?”
教师事先做好板书并交流好计算结果。
师:你能发现什么规律吗?
生1:被除数都是3/4
生2:都是分数除法
师提示:观察一下除数,3和3/2?
生:大于1
师:请你再比较一下商和被除数,你能发现什么吗?
通过交流和归纳总结,得出如下的结论:
生1:除数比1大的时候,商比被除数小
生2:除数比1小的时候,商比被除数大
生3:除数等于1时,商等于被除数
按照教学要求,已经达到这道题的教学目标,但是我又加了一个环节,让学生把这个规律和前面分数乘法中的规律进行比较,让学生明白其实我们在比较大小的时候其实可以把分数除法转化成乘法再来比较也是可以的。
如比较4/7÷2和4/7×2的大小,4/7÷2其实就等于4/7×1/2,求的.是4/7的一半,而4/7×2指的是4/7的2倍,所以一下就可以比较出大小了。
分数除以分数教学反思3
未来社会已越来越注重个人能否与他人协作共事,能否有效地表达自己的看法和见解,能否认真倾听他人的意见,能否概括和吸取他人的意见等等。因此,需要我们教师在课堂上加强对学生合作意识的培养。“数学课程标准”明确指出:“动手实践,自主探究,合作交流是学生学习数学的重要方式。”因为,合作交流给学生提供了一个充分展示自己的舞台,同时也弥补了传统教学中课堂发言机会有限的缺陷,还可以培养了学生听,说,交往和组织等方面的能力。
基于以上的理解,我是这样处理《分数除以分数》这一课的,我把书本的例2计算5/14÷10/21改为一块长方形木板的面积是8/25*方米,宽是2/5米, 长是多少米?接着就问:“怎样列式?”学生们异口同声地回答:“8/25÷2/5”接着又问:“会计算吗?”学生们又说:“会。”接下来先请学生独立计算,然后再四人小组合作交流自己的计算方法。汇报结果时,①有的小组说我们把分数化成小数来计算的。8/25÷2/5=0.32÷0.4=0.8(*方米)
②有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数倒数。我们认为分数除以分数的计算方法也等于乘以这个数倒数。所以 8/25÷2/5=8/25×5/2=4/5(*方米)
③有的小组说我们把除数是分数的转化成整数,然后再进行计算,8/25÷2/5=(8/25× 5/2) ÷(2/5×5/2)=4/5÷1=4/5(*方米)
④有的小组说,我们利用乘法与除法之间的关系,是这样想的,几和2相乘等于8,几和5相乘等于25,可以推断出这个数是 4/5,所以8/25÷2/5=4/5(*方米)
⑤有的小组说,分数乘以分数可以用分子相乘的积作为分子,分母相乘的积作为分母,那么这一题计算方法也可以用分子4/5(*方米)相除的积作为分子,分母相除乘的积作为分母,所以 8/25÷2/5=(8÷2)/(25÷5) =4/5(*方米)
当学生们说出这五种方法以后,我让他们再小组讨论这五种方法是不是适用于所有的分数除以分数。再汇报结果,得出①④⑤对于特殊的分数可以使用。②③相比②简便,③麻烦。最后得出分数除以分数的计算方法是除以分数等于乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。
在这一教学过程中,学生的主体地位得到了尊重,他们从被动的接受知识变成了主动探索,合作探索新知。使每个学生都有机会参与讨论,在讨论中享有发言权,可把自己的观点,想法告诉同学们,同时也可以倾听其他同学们的意见。通过两次小组合作交流,使学生在更深层次上认识所学的内容,真正成为学习的主人。
推荐访问:除以 整数 教案 分数除以整数教案五篇 分数除以整数教案1 分数除以整数教案人教版